
Partial Opposition-based Learning Using Current
Best Candidate Solution

Sedigheh Mahdavi
Department of Electrical, Computer,

and Software Engineering

University of Ontario Institute

of Technology (UOIT)

Oshawa, Canada

Email: Sedigheh.Mahdavi@uoit.ca

Shahryar Rahnamayan, SMIEEE
Department of Electrical, Computer,

and Software Engineering

University of Ontario Institute

of Technology (UOIT)

Oshawa, Canada

Email: Shahryar.Rahnamayan@uoit.ca

Kalyanmoy Deb, FIEEE
Department of Electrical and

Computer Engineering

Michigan State University

East Lansing, USA

Email: kdeb@egr.msu.edu

Abstract—Opposition based learning (OBL) has been gaining
significant attention in machine learning, specially, in meta-
heuristic optimization algorithms to take OBL’s advantage for
enhancing their performance. In OBL, all variables are changed
to their opposites while some variables are currently holding
proper values which are discarded and converted to worse values
by performing opposite. The partial opposition scheme was
developed to change randomly some variables to its opposites
but they do not pay enough attention to identify and keep
variables which have proper values. In this paper, we propose
a novel partial opposition scheme, which is generated based on
the current best candidate solution. It tries to generate new trial
solutions by using the candidate solutions and their opposites such
that some variables of a candidate solution are remain unchanged
and other variables are changed to their opposites in the trial
solution (i.e., gene/variable based optimization). Variables in the
trial solution are identified as close or far, according to their
Euclidean distance from the corresponding variables/genes in
the current best candidate solution. The proposed scheme uses
the opposite of variables, which are closer to the current best
solution. Only the new trial solutions are included in the next
generation which are closer to corresponding opposite solution. As
a case study, we employ the proposed partial opposition scheme
in the DE algorithm and the partial opposition-based DE is
evaluated on CEC-2014 benchmark functions. Simulation results
confirm that the partial opposition-based DE obtains a promising
performance on the majority of the benchmark functions. The
proposed algorithm is compared with the Opposition-based DE
(ODE) and random partial opposition-based DE algorithm (DE-
RPO); the results show that our new method is better than or at
least comparable to other competitors.

I. INTRODUCTION

Metaheuristic algorithms are an efficient class of the opti-
mization methods for solving the complex real-world problems
in engineering and science applications. All these algorithms
have the common basic framework: they start with some
random candidate solutions as the initial population. Then,
in the evolutionary iteration they apply some operations to
generate new trial candidate solutions. The generated trial can-
didate solutions compete to survive. Opposition based learning
(OBL) was proposed [1], [2], [3] to improve DE algorithm
with considering the current candidate solutions and their
corresponding opposites simultaneously during initialization
and evolutionary processes.

Generally speaking, the OBL scheme considers the current

estimate (guess) and its corresponding opposite estimate (anti-
guess) simultaneously to converge to an optimal solution for
a given objective function in the machine learning algorithms.
Many machine learning algorithms have been enhanced by uti-
lizing this concept, such as, Reinforcement Learning (RL) [4],
Artificial Neural Networks (ANN) [5], fuzzy systems [6], and
variant optimization methods [1], [3], [7], like Genetic Algo-
rithms (GA), Differential Evolution (DE), Particle Swarm Op-
timization (PSO), Biogeography-Based Optimization (BBO),
Harmony Search (HS), Ant Colony System (ACS), Artificial
Bee Colony (ABC), Simulated Annealing (SA), discrete and
combinatorial optimization, etc.

In recent years, several schemes of OBL have been devel-
oped, such as, quasi-reflection opposition [8], comprehensive
opposition [9], centroid point-opposition [10], convex or con-
cave opposition with the beta distribution [11], rotated-based
learning [12], fitness-based opposition [13], partial opposition-
based learning [14], opposite-center learning [15], type-II
OBL [16], generalized opposition-based learning [17] and
super-opposition [18]. In the mentioned schemes of OBL, all
variables are selected to change into their opposite therefore
it may cause that some good variables with the proper values
in the original candidate solution are destroyed. The partial
opposition scheme was proposed in a few research works
[14], [11] to keep some variables of a candidate solution.
In [14], a partial opposition-based learning (POBL) scheme
was proposed by computing a set of partial opposite points
for a candidate solution. In the partial opposite point, the
opposition values for only some dimensions of a candidate
solution are computed. In [11], they changed the subset of
dimensions to their opposition values. These methods just
select randomly some variables to compute their opposite.
Because these partial schemes are based on a random strategy
to choose variables to be coverted to their opposite, they can
not guaranty that variables with proper values are still kept.
In fact, all variables have an equal chance to change into their
opposites. Thus, it would be interesting to develop some partial
opposition schemes which can increase the change chance of
some variables with the improper values into their opposite
while can decrease the risk of changing the good variables
with the proper values.

In this paper, we propose a new concept of the partial op-
position according to identifying the closeness of variables in a

978-1-5090-4240-1/16/$31.00 ©2016 IEEE

candidate solution to the variables of the current best candidate
solution. In the first step, for each candidate solution of the
current population, a new trial solution is generated which the
close variables of a candidate solution to the current best can-
didate solution are unchanged and other remaining variables
are selected to be converted to their opposites. After generating
all new trial candidate solutions, those trial candidate solutions
are included in the opposite population which their changed
variables are more their unchanged variables. Then, the fittest
solutions are selected from the union of two populations
(i.e., the current population and the opposite population). The
performance of the proposed algorithm is evaluated on CEC-
2014 benchmark functions. Simulation results confirm that the
proposed algorithm obtains a promising performance on the
majority of functions.

The organization of the rest of the paper is as follows.
Section II presents a background review. Section III describes
the details of the proposed method. Section IV presents the
experimental results. Finally, the paper is concluded in Section
V.

II. BACKGROUND REVIEW

A. Opposition-Based Learning

Concept of opposite numbers were defined in [2] as fol-
lows.
Definition 1 (The opposite number) [2]. Let x ∈ [a, b] be a
real number. Its opposite number, x̆, is defined as follow:

x̆ = a+ b− x. (1)

Fig. 1 indicates the number x and its opposite, x̆. Similarly,
the opposition concept can be extended for higher dimensions
as follows.
Definition 2 (The opposite point in the D space) [2].
The opposition of the point X(x1, . . . , xD), xi ∈ [ai, bi], i =
1, 2, . . . , D was defined in the D-dimensional space as follow:
[2]:

x̆i = ai + bi − xi. (2)

The fundamental goal of utilizing OBL in the opposition-

Fig. 1: The number x and its opposite x̆ [7].

based methods is the increasing of convergence rate of finding
fittest solutions for a black-box problem.

B. Opposition-based Differential Evolution (ODE)

For the first time, Rahnamayan et al. (2006) [3], [19]
proposed the Opposition-based DE (ODE) which utilizes the
OBL concept in the DE algorithm to improve its performance.
In the initialization and evolutionary phases in the classic
DE algorithm, OBL is applied; the initial population is ran-
domly generated and simultaneously the opposite of the initial
population is constructed by computing the opposite of each
candidate solution. Then, the fittest solutions are selected as the

initial population from the union of two populations (the initial
population and its opposite). In the evolutionary process, the
opposition of the current population is dynamically computed
according to a jumping rate by employing the minimum and
maximum values of each variable in the current population.
Dynamic opposition for the candidate solution x in the evolu-
tionary process is calculated as follow:

x̆i,j = ai + bi − xi,j , (3)

where ai and bi are current maximum and minimum values of
each variable in the current population. In [7], comprehensive
experiments were conducted to analyze the influence of dimen-
sionality, opposite points, population size, various strategies of
mutation, and jumping rates. In [?], [20], it is mathematically
proved that considering the random candidate solution and its
opposite has higher chance to be closer to an unknown optimal
solution than two random candidate solutions.

C. Random Partial Opposition Scheme

In [14], a POBL-based adaptive DE was proposed in
which for each candidate solution, a set of partial opposite
solutions is generated. Then, the opposite of the candidate
solution and some of partial solutions are randomly selected
to compete for replacing with the original candidate solution.
Park et al. [11] proposed a stochastic OBL using a beta
distribution which integrated with the selection switching and
the partial dimensional changing schemes. They perform the
proposed stochastic OBL randomly on some dimensions to
preserve some variables of the candidate solution. The random
POBL gives an equal chance for all variables to change into
their opposites; therefor it would be still possible to destroy
variables with proper values by computing their opposites.

In [14], [11], a kind of OBL, partial opposition scheme,
was proposed which in a candidate solution, some randomly
selected variables are replaced with their opposites and and
all other variables remain untouched. When some variables
are randomly selected, the number of candidate trial solutions
which can be generated from the original candidate solution
and its opposite would be equal to 2n − 2. The values of n
variables can be selected from the original candidate solution
and its opposite, therefore there are two possible values for
each variable. Fig. 2 indicates all possible trial solutions for
the original candidate solution and its opposite in the three-
dimensional space. In Fig. 2, the point X8 is the opposite
of the point X1 and points X2−X7 are the possible partial
opposite points which can be generated by X1 and X2 as partial
opposite.

III. THE PROPOSED PARTIAL OPPOSITION-BASED DE

The opposition schemes computes the opposition for all
variables of a candidate solution while some variables can
have close values to the corresponding variables in the optimal
solution. Therefore, if the opposition is computed for all
variables in a candidate solution, some variables with having
proper values may be converted to their opposite values which
it can take them far away from the optimal region. In the
previous partial opposition schemes, they changed randomly
a subset of variables into their opposite values so it is still
possible that some near optimal variables become worse; in
fact, the partial opposition scheme is not intelligent enough to

Algorithm 1 :DE-POB (NP, JR, NFCMAX , D)

1: //NP , JR, NFCMAX , and D are the population size,
jumping rate, the maximum number of function evalua-
tions, and the dimension of problem.

2: //Computing opposition-based population initialization.
3: Generating the initialization population randomly, pop.
4: Calculating the opposition population, opop by using equa-

tion 1.
5: Picking NP fittest solutions from pop

⋃
opop as the

initialization population.
6: NFC=1.
7: while NFC < NFCMAX do
8: //Run one cycle of an optimization algorithm by per-

forming mutation, crossover, and selection operations.
9: pop1 ⇐ optimizer(pop)

10: (bestsolution, best val) ⇐ evaluate(pop1)
11: //Run the partial opposition according to the jumping

rate.
12: Par opp = []
13: if rand(0, 1) < JR then
14: for k = 1 to NP do
15: Iter V ar = 0
16: Iter V ar opp = 0
17: New trial = []
18: for j = 1 to D do
19: Calculate the opposition of jth variable as

opp(j) by Equation (2)
20: Categorize jth variable to close and far classes

based on its Euclidean distance of jth variable
in the bestsolution

21: if jth variable is close then
22: New trial(j) = pop(k, j)
23: Iter V ar = Iter V ar + 1
24: else
25: New trial(j) = opp(j)
26: Iter V ar opp = Iter V ar opp+ 1
27: end if
28: end for
29: //Check a solution to include the partial opposition

population, Par opp,
30: if Iter V ar < Iter V ar opp then
31: Par opp = pop

⋃
New trial

32: end if
33: end for
34: Picking NP fittest solutions from pop

⋃
Par opp as

the current population.
35: end if
36: NFC = NFC + 1
37: end while

Fig. 2: The possible generated trial solutions from the original
candidate solution (X1) and its opposite (X8).

target just far variables to be replaced with their opposites.
As the dimension of a problem is increased, by randomly
performing the opposition for only some variables the partial
opposite solution would be so similar (i.e., close) to the
original candidate solution.

The main goal in the proposed partial opposition, based on
the current best candidate solution, is maintaining the values
of those variables which are currently holding proper values;
i.e., they have closer values to the unknown optimal solution
than its opposite values. In fact, we keep those untouched
variables which computing their opposition cannot offer the
better values than their current values. In optimization steps,
the obtained best solution is as a guide, i.e., the assumption is
that the obtained best candidate solution so far moves toward
the optimal solution (we know that it is not guaranteed),
so the proposed partial opposition uses the guidance of the
obtained best candidate solution. For example, in the Fig. 3
if the point Xopt2 is supposed as the optimal solution, the
original candidate solution X1 would be much closer than its
opposition X̆1(X8) to Xopt2. In this case, the trial partial
opposite points X2 − X4 are more likely would be selected
due to their closeness to the optimal solution Xopt2. Also,
if the point Xopt1 is supposed as the optimal solution, the

opposition point X̆1(X8) would be much closer than the
original candidate solution X1 to Xopt1. In this case, the
trial partial opposite points X5−X7 are more likely will be
selected due to their closeness to the optimal solution Xopt1.

In the following, the partial opposition-based algorithm
based on the current best candidate solution is described in
details (Algorithm 1). First, the initial population is randomly
generated (line 3) and the opposite initial population is com-
puted (line 4). Then, the fittest candidate solutions are selected
as the initial population from the union of initial population and
its opposite population (line 5). In the evolutionary process,
after running the evolutionary operations, the partial opposite
population is computed according to a jumping rate (lines 13-
35). Variables of each candidate solution in the population,
are categorized in two classes based on their closeness; close
and far variables (line 20). To identify closeness of variables,
first the opposite of the candidate solution x̆ = (x̆1, . . . , x̆n) is

Fig. 3: The trial partial opposite points and the optimal
solution.

calculated which the minimum and maximum values of each
dimension, ai and bi, in the current population are employed
for calculating it:

x̆i = ai + bi − xi. (4)

Then, the Euclidean distance of each variable with the cor-
responding variable in the obtained best current candidate
solution, xbest = (xbest1, . . . , xbestn), is calculated in the
original candidate solution x and its opposite x̆. If this Eu-
clidean distance of each variable in the original candidate
solution distxi is greater than the Euclidean distance of the
corresponding variable in the opposite solution distx̆i

then this
variable is assigned as close variable; otherwise, it is assigned
as far variable. A partial opposite trial solution is created from
a candidate solution x such that the values of the variables
in the class close are remain unchanged while all variables in
the class far are replaced with their corresponding opposite
values (lines 21-27). The new partial opposite trial solution
xt(xt1, xt2, . . . , xtn) is generated as follows:

xti =

{
xi if the variable xi is close variable,

x̆i if the variable xi is far variable,
(5)

Fig. 4 shows an example to indicate how a generated new
trial candidate solution takes values for its variables from the
original candidate solution and its opposite according to the
class of variables; far and close. Fig. 5 indicates two partial
opposite solutions for two cases; assuming the optimal solution
can be Xopt2 or Xopt1. In the first case, the original candidate
solution X1 is closer to the optimal solution Xopt2 while in the

second case, its opposite X̆1 = X2 is closer to the optimal
solution Xopt1. As it can be seen from Fig. 5, in the first

case, the new trial solution X̆p2 = X4 has variables which
their values are taken from X1 while for the second case the
variables of the new trial solution X̆p1 = X3 are more closer

to X̆1. Partial opposite trial candidate solutions are computed
for all the candidate solutions in the current population; but for
constructing the partial opposite population, it includes those
trial solutions which the number of their variables with the
opposite values is greater than the variables with the original
values (lines 29-32). The reason of selecting some partial

1 1

 2 2

 3

 n

1 1

2

3

n

1

2

 3

n

Candidate solution Opposition solution New trial solution

…
…
…
…

…
…
…
…

…
…
…
…

Class: Close

Class: Far

Fig. 4: The new partial opposite trial candidate solution from
the original candidate solution and its opposite.

Fig. 5: Two sample cases of the partial opposite solutions.

opposite trial solutions is that new trial solutions including
a significant difference with the original candidate solution
are more potential to be an effective generated solution for
exploring search space. In fact, the partial opposite population
is created in such a way that it contains more solutions which
their position is more closer to the opposite solutions. When
the most of variables in the new trial solutions are similar with
the candidate solutions so there is the proper representatives
of them, the candidate solutions, in the population. Then, the
fittest solutions are selected from the union of two populations
(the current population and the partial opposite population).
The proposed partial opposition scheme can be applied to every
other population-based optimization algorithm, we used the
classical DE (DE/1/bin) algorithm as the parent algorithm for
our case study.

IV. EXPERIMENTAL RESULTS

A. Setup of experiments

To analyze the performance of the proposed partial
opposition-based algorithm, we compare the partial opposition-
based DE (DE/rand/bin) based on the current best candi-

TABLE I: Results of the DE-POB algorithm DE-RPO and ODE
algorithms on the CEC-2014 benchmark functions. Symbols ’†’, ’‡’,
and ’≈’ denote DE-POB are worse than, better than, or similar to
the compared algorithms, respectively.

Function ODE DE-RPO DE-POB

f1
Mean 3.72561e+09‡ 5.21279e+08‡ 4.48823e+08
Std 1.20999e+09 1.08989e+08 1.25750e+08

f2
Mean 1.69937e+11‡ 3.66937e+07‡ 3.54716e+06
Std 3.41760e+10 1.40192e+07 1.48829e+07

f3
Mean 3.29004e+05‡ 2.74494e+04‡ 2.39510e+04
Std 3.08450e+04 5.81691e+03 5.32654e+03

f4
Mean 3.63397e+04‡ 7.12830e+02≈ 7.32972e+02
Std 1.29091e+04 3.74495e+01 5.42602e+01

f5
Mean 5.21350e+02≈ 5.21359e+02≈ 5.21343e+02
Std 2.69298e-02 2.55112e-02 4.61353e-02

f6
Mean 7.52724e+02‡ 7.08083e+02‡ 6.68462e+02
Std 5.80407e+00 3.12403e+01 2.80166e+01

f7
Mean 2.42592e+03‡ 7.01297e+02‡ 7.00503e+02
Std 3.97986e+02 1.65061e-01 3.26848e-01

f8
Mean 2.02808e+03‡ 1.67194e+03‡ 1.45921e+03
Std 9.22851e+01 3.84690e+01 1.08019e+02

f9
Mean 2.28349e+03‡ 1.83019e+03‡ 1.79912e+03
Std 7.42268e+01 2.38865e+01 3.13257e+01

f10
Mean 3.00357e+04‡ 2.83363e+04‡ 2.67972e+04
Std 1.95148e+03 7.79638e+02 1.34480e+03

f11
Mean 3.19373e+04≈ 3.25289e+04‡ 3.19433e+04
Std 9.91834e+02 5.54688e+02 1.34986e+03

f12
Mean 1.20448e+03‡ 1.20444e+03≈ 1.20414e+03
Std 2.46607e-01 2.47009e-01 7.88565e-01

f13
Mean 1.30678e+03‡ 1.30073e+03‡ 1.30062e+03
Std 7.45499e-01 6.31482e-02 6.41723e-02

f14
Mean 1.88890e+03‡ 1.40046e+03‡ 1.40042e+03
Std 8.91698e+01 7.50780e-02 1.10073e-01

f15
Mean 6.78229e+06‡ 1.58633e+03† 1.59018e+03
Std 4.48444e+06 2.73409e+00 5.87956e+00

f16
Mean 1.64718e+03‡ 1.64732e+03‡ 1.64686e+03
Std 2.73415e-01 2.46334e-01 3.38786e-01

f17
Mean 4.29543e+08‡ 2.52154e+07≈ 2.40825e+07
Std 1.63567e+08 8.37978e+06 7.89659e+06

f18
Mean 7.67282e+09‡ 3.70596e+03≈ 4.14493e+03
Std 3.64883e+09 1.69874e+03 2.60496e+03

f19
Mean 3.23660e+03‡ 2.00306e+03‡ 2.00061e+03
Std 4.01010e+02 4.43069e+00 4.96403e+00

f20
Mean 8.20847e+05‡ 5.01147e+04‡ 3.80302e+04
Std 3.51597e+05 1.39618e+04 1.33209e+04

f21
Mean 1.83396e+08‡ 5.27921e+06‡ 4.43295e+06
Std 6.73970e+07 1.90572e+06 1.26511e+06

f22
Mean 9.73620e+03‡ 6.84544e+03≈ 6.76021e+03
Std 2.44188e+03 2.82725e+02 2.72120e+02

f23
Mean 3.85675e+03‡ 2.64962e+03‡ 2.64906e+03
Std 2.82778e+02 5.89315e-01 6.16393e-01

f24
Mean 3.04557e+03‡ 2.80204e+03† 2.80628e+03
Std 7.92355e+01 6.93415e+00 6.86070e+00

f25
Mean 2.80733e+03† 2.85706e+03‡ 2.82457e+03
Std 3.78630e+01 2.99550e+01 3.16336e+01

f26
Mean 2.82915e+03≈ 2.85149e+03≈ 2.84015e+03
Std 4.03246e+01 1.44670e+02 9.68158e+01

f27
Mean 6.93098e+03‡ 4.53032e+03‡ 4.02844e+03
Std 1.90095e+02 3.14355e+02 3.28947e+02

f28
Mean 1.26760e+04‡ 5.90889e+03≈ 6.11552e+03
Std 2.33232e+03 3.86039e+02 5.63850e+02

f29
Mean 1.35003e+08‡ 4.85583e+07‡ 2.53401e+07
Std 2.18485e+07 4.63642e+07 4.16633e+07

f30
Mean 2.45012e+07‡ 3.20163e+04≈ 2.90922e+04
Std 1.33566e+07 7.82685e+03 5.10849e+03

w/t/l 26/3/1 19/9/2 -

date solution, namely DE-POB, against the Opposition-based
DE (ODE) [7] and the random partial opposition-based DE
algorithm, namely DE-RPO, which randomly selects some
variables with the probability of 0.5 to convert into their
opposite values. Experiments are conducted on the CEC-2014
benchmark functions [21] with D=100. In this study, the

maximum number of fitness evaluations was set to D× 1000,
the population size was set to 100, and the jumping rate was set
to 0.3. All algorithms are evaluated over 51 independent runs
and the results are recorded. A two-sided Wilcoxon statistical
test with a confidence interval of 95% is performed among the
compared algorithms and DE-POB algorithm. Symbols ’†’, ’‡’,
and ’≈’ denote the compared algorithm are worse than, better
than, or similar to DE-POB algorithm, respectively. ”w/t/l”
in the last row in tables means that the compared frameworks
wins in w functions, ties in t functions, and loses in l functions,
compared with DE-POB algorithm.

B. Numerical Results

The mean and the standard deviation of the obtained
error values by DE-POB, ODE and DE-RPO algorithms are
summarized in the Table I. As it can be seen from the Table
I, DE-RPO perform better than DE-POB and ODE on 26 (f1-
f4,f21 − f24, and f27 − f30) and 19 (f1-f3,f6 − f11,f13 −
f14,f16,f19-f21,f23,f25 and f29) functions, respectively. The
results of DE-RPO are worse than DE-POB and ODE on 1
(f25), and 2 (f15 and f24) functions, respectively. DE-RPO
achieve the same results in comparison with DE-POB and ODE
on 5 and 15 other functions. To gain a better understanding
of the behavior of the DE-POB algorithm and DE-RPO and
ODE algorithms, we plot the convergence graph on six selected
problems in Fig.7. From the results, it can be seen that DE-
RPO algorithm is significantly better than other algorithms.
In Fig.6, we plot the number of the survive partial opposite
solutions based on the current best candidate solution in cycles
which the partial opposition is performed for some functions.
As it can been seen from Fig.6, the plots of functions f10 and
f13 indicate that the number of survive trial solutions is large
in the earlier cycles and it is decreased in the last cycles.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, the partial opposite concept by using cur-
rent best candidate solution was introduced. In the par-
tial opposition-based algorithm, variables are divided in two
groups, close and far, according to their Euclidean distance
with the corresponding variables in the obtained best solution
so far. The partial opposition scheme maintains the close
variables while the far variables are changed to their opposite
values. After generating new trial solutions, some trial solu-
tions are consider to evaluate; those solutions with having more
changed variables than the unchanged variables. The perfor-
mance of the partial opposition-based algorithm was evaluated
on CEC-2014 benchmark functions with D=100. The proposed
algorithm was compared with the Opposition-based DE (ODE)
and random partial opposition-based DE algorithm (DE-RPO).
The performance of the proposed algorithm is superior to or
at least comparable with the compared algorithms. In future,
we are planning to design the new schemes of the partial
opposition to use the advantages of other types of OBL such
as quasi-reflection and centroid opposition types. Furthermore,
we will investigate scalability analysis of this proposed scheme
to solve large-scale problems.

0.00E+00
5.00E+00

1.00E+01

1.50E+01

2.00E+01

2.50E+01
3.00E+01

3.50E+01
4.00E+01

4.50E+01

5.00E+01
1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

27
1

F4

(a) f4

0.00E+00

5.00E+00

1.00E+01

1.50E+01

2.00E+01

2.50E+01

3.00E+01

3.50E+01

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

20
8

21
7

22
6

23
5

24
4

25
3

F10

(b) f10

0.00E+00

5.00E+00

1.00E+01

1.50E+01

2.00E+01

2.50E+01

3.00E+01

3.50E+01

4.00E+01

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

27
1

F13

(c) f13

0.00E+00

5.00E+00

1.00E+01

1.50E+01

2.00E+01

2.50E+01

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

21
0

22
1

23
2

24
3

25
4

26
5

27
6

28
7

29
8

F28

(d) f28

Fig. 6: The number of the survive partial opposite solutions based on the current best candidate solution in corresponding iterations. The
vertical axis is the number of the survive partial opposite solutions.

REFERENCES

[1] S. Rahnamayan, “Opposition-based differential evolution,” Ph.D. dis-
sertation, 2007.

[2] H. R. Tizhoosh, “Opposition-based learning: a new scheme for machine
intelligence,” in null. IEEE, 2005, pp. 695–701.

[3] S. Rahnamayan, H. R. Tizhoosh, and M. Salama, “Opposition-based
differential evolution algorithms,” in Evolutionary Computation, 2006.
CEC 2006. IEEE Congress on. IEEE, pp. 2010–2017.

[4] H. R. Tizhoosh, “Reinforcement learning based on actions and oppo-
site actions,” in International conference on artificial intelligence and
machine learning, vol. 414, 2005, pp. 906–918.

[5] M. Ventresca and H. R. Tizhoosh, “Improving the convergence of
backpropagation by opposite transfer functions,” in Neural Networks,
2006. IJCNN’06. International Joint Conference on. IEEE, 2006, pp.
4777–4784.

[6] H. R. Tizhoosh, “Opposite fuzzy sets with applications in image
processing.” in IFSA/EUSFLAT Conf., 2009, pp. 36–41.

[7] S. Rahnamayan, H. R. Tizhoosh, and M. Salama, “Opposition-based
differential evolution,” Evolutionary Computation, IEEE Transactions
on, vol. 12, no. 1, pp. 64–79, 2008.

[8] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, “Quasi-
oppositional differential evolution,” in 2007 IEEE Congress on Evo-
lutionary Computation. IEEE, 2007, pp. 2229–2236.

[9] Z. Seif and M. B. Ahmadi, “Opposition versus randomness in binary
spaces,” Applied Soft Computing, vol. 27, pp. 28–37, 2015.

[10] S. Rahnamayan, J. Jesuthasan, F. Bourennani, H. Salehinejad, and G. F.
Naterer, “Computing opposition by involving entire population,” in
Evolutionary Computation (CEC), 2014 IEEE Congress on. IEEE,
2014, pp. 1800–1807.

[11] S. Park and J. Lee, “Stochastic opposition-based learning using a beta

distribution in differential evolution.” IEEE transactions on cybernetics,
2015.

[12] H. Liu, Z. Wu, H. Li, H. Wang, S. Rahnamayan, and C. Deng,
“Rotation-based learning: A novel extension of opposition-based learn-
ing,” in PRICAI 2014: Trends in Artificial Intelligence. Springer, 2014,
pp. 511–522.

[13] M. Ergezer and D. Simon, “Probabilistic properties of fitness-based
quasi-reflection in evolutionary algorithms,” Computers & Operations
Research, vol. 63, pp. 114–124, 2015.

[14] Z. Hu, Y. Bao, and T. Xiong, “Partial opposition-based adaptive differ-
ential evolution algorithms: evaluation on the cec 2014 benchmark set
for real-parameter optimization,” in Evolutionary Computation (CEC),
2014 IEEE Congress on. IEEE, 2014, pp. 2259–2265.

[15] H. Xu, C. D. Erdbrink, and V. V. Krzhizhanovskaya, “How to speed up
optimization? opposite-center learning and its application to differential
evolution,” Procedia Computer Science, vol. 51, pp. 805–814, 2015.

[16] H. Salehinejad, S. Rahnamayan, and H. R. Tizhoosh, “Type-ii
opposition-based differential evolution,” in 2014 IEEE Congress on
Evolutionary Computation (CEC). IEEE, 2014, pp. 1768–1775.

[17] H. Wang, Z. Wu, and S. Rahnamayan, “Enhanced opposition-based
differential evolution for solving high-dimensional continuous optimiza-
tion problems,” Soft Computing, vol. 15, no. 11, pp. 2127–2140, 2011.

[18] H. Tizhoosh and M. Ventresca, “Oppositional concepts in computational
intelligence,” Studies in Computational Intelligence. Berlin, Germany:
Springer, vol. 155, 2008.

[19] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, “A novel pop-
ulation initialization method for accelerating evolutionary algorithms,”
Computers & Mathematics with Applications, vol. 53, no. 10, pp. 1605–
1614, 2007.

[20] S. Rahnamayan, G. G. Wang, and M. Ventresca, “An intuitive distance-

0 20,000 40,000 60,000 80,000 100,000
102.71713

102.71715

102.71717

102.71719

102.71721

102.71723
ODE

DE−RPO

DE−POB

(a) f5

0 20,000 40,000 60,000 80,000 100,000

103.2

103.3

103.4

ODE
DE−RPO
DE−POB

(b) f8

0 20,000 40,000 60,000 80,000 100,000

103.0808

103.0809

103.081

103.0811

103.0812

103.0813

103.0814
ODE
DE−RPO
DE−POB

(c) f12

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
104

105

106

107

108

ODE
DE−RPO
DE−POB

(d) f20

0 20,000 40,000 60,000 80,000 100,000

103.5

103.6

ODE

DE−RPO

DE−POB

(e) f24

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
107

108

109

1010

ODE
DE−RPO
DE−POB

(f) f29

Fig. 7: Convergence plots of f5, f8,f12,f20,f24, and f29 of the CEC-2014 benchmark function. The results were averaged over 51 runs. The
vertical axis is the function value and the horizontal axis is the number of function evaluations.

based explanation of opposition-based sampling,” Applied Soft Comput-
ing, vol. 12, no. 9, pp. 2828–2839, 2012.

[21] J. Liang, B. Qu, and P. Suganthan, “Problem definitions and eval-
uation criteria for the cec 2014 special session and competition on
single objective real-parameter numerical optimization,” Computational
Intelligence Laboratory, Zhengzhou University, Zhengzhou China and
Technical Report, Nanyang Technological University, Singapore, 2013.

